精品三级国产精品经典三-精品三级国产一区二区三区四区-精品三级久久久久久久电影-精品三级三级三级三级三级-正在播放一区-正在播放亚洲一区

技術文章您現在的位置:首頁 > 技術文章 > Broadpharm基礎篇什么是點擊化學?What is Click Chemistry?

Broadpharm基礎篇什么是點擊化學?What is Click Chemistry?

更新時間:2023-12-06   點擊次數:703次

Click Chemistry is a chemical reaction between pairs of reagents (named click chemistry reagents) to exclusively react with each other under mild conditions and is effectively inert to naturally occurring functional groups such as amine groups. The term "Click Chemistry" was first coined by Sharpless in 2001 in an effort to design a method to easily synthesize molecules under mild conditions and the product can be easily isolated.


Click Chemistry reactions can be categorized into three generations:

(1) Cu(I)-catalyzed Azide-Alkyne Click Chemistry (CuAAC reactions, Figure 1):

Cu catalyzed azide-alkyne click chemistry reactions diagram


The first generation of Click Chemistry involved the reaction of azide with alkyne catalyzed by Cu(I). The copper catalyst allows for this reaction to be carried out efficiently under mild conditions in water whereas the reaction would require high temperature and high pressure without the copper catalyst. Copper catalyzed Click Chemistry has been found to have the second fastest rate constant of 10-100 M-1s-1.

Due to the toxic nature of copper to living structures and biosystems, copper catalyzed Click Chemistry is not a viable method of carrying out reactions in living systems which has led to the development of the following two generations of Click Chemistry.

(2) Strain-promoted Azide-Alkyne Click Chemistry (SPAAC reactions, Figure 2):

DBCO reagent or BCN reagent can be used to perform Click Chemistry with azide molecules without the need of heavy-metal catalysis.


Strain-promoted Azide-Alkyne Click Chemistry reactions diagram

Figure 2: Strain-promoted Azide-DBCO Click Chemistry


The bond strain created by the bond angle of the cyclooctyne (DBCO or BCN) requires less energy for the cyclooctyne to form the (3+2) cycloaddition which releases enthalpic energy caused by the ring strain of the cyclooctyne. This generation does not require copper as a catalyst and it can be used in cell surface and in vivo labeling. The rate constant is 10-2-1 M-1s-1.


(3) Ligation between tetrazine and alkene (trans-Cyclooctene)

Ligation between tetrazine and alkene (trans-Cyclooctene) diagram


The third generation of Click Chemistry is the ligation between tetrazine with trans-Cyclooctene (TCO). The mechanism for this ligation utilizes ring strain from the trans-Cyclooctene and an inverse Diels-Alder reaction between the electron rich trans-Cyclooctene and the electron poor tetrazine. This ligation has been found to be the fastest generation of Click Chemistry thus far with a rate constant of 1-106 M-1s-1. The reaction can also be carried out in vivo in aqueous solution.

Applications of Click Chemistry

Click Chemistry has been widely used in drug discovery, bioconjugation, labeling, and material sciences in the pharmaceutical and biotech industry due to its mild conditions and high selectivity.

Click Chemistry in Drug Discovery

Click Chemistry is utilized in the formation of ADC linkers in antibody drug conjugates. For example, Trodelvy (Sacituzumab Govitecan), also known as IMMU-132 (Figure 4), is an immune target therapy medicine for triple-negative breast cancer which contains sacituzumab and SN-38 bound with a linker. Click Chemistry is used in the formation of the linker to form a triazole that links SMCC to a PEG8 moiety.


structure of trodelvy

Figure 4: Structure of Trodelvy.


Click Chemistry in Joint Cartilage Therapy

Click Chemistry has also been used in cell-based therapy to treat damage in joint cartilage, relieve pain, and improve function. Autologous chondrocyte transplantation targets apoptotic chondrocytes in cartilage which can be identified by a six amino acid peptide, ApoPep-1, and by binding injected healthy chondrocytes from unaffected cartilage. ApoPep-1 carries a trans-Cyclooctene bound by a PEG Linker to apoptotic chondrocytes which can then bind healthy chondrocytes via Click Chemistry to tetrazine to encourage cartilage regeneration (Figure 5).


Diels-Alder diagram



Figure 5: Inverse Diels-Alder Click Chemistry reaction between TCO and tetrazene for joint cartilage therapy


Click Chemistry Tools

As a leading click chemisty reagent supplier worldwide, BroadPharm provides over 500 high purity Click Chemistry Reagents (tools) and Kits with an array of functional groups such as: Azide, Alkyne, DBCO, TCO, Tetrazine, BCN to empower our clients' advanced research and drug development.



靶點科技攜手Broadpharm,最快一周,為您提供點擊化學試劑。授權代理,正品保證,質量無憂,貨期超快,助力您的研究應用。

靶點科技(北京)有限公司

靶點科技(北京)有限公司

地址:中關村生命科學園北清創意園2-4樓2層

© 2025 版權所有:靶點科技(北京)有限公司  備案號:京ICP備18027329號-2  總訪問量:272858  站點地圖  技術支持:化工儀器網  管理登陸

主站蜘蛛池模板: 99久久综合精品国产 | 久久久999国产精品 久久久99精品免费观看 | 久久九九色| 波多野结衣一区二区 | 日本一区二区不卡久久入口 | 国产乱子视频 | 日本在线视频播放 | 国产三级做爰在线观看视频 | se就是色94欧美setu | 亚洲综合久久1区2区3区 | 日本三级午夜 | 成人亚洲精品一区 | 黄色免费看片网站 | 久久国产精品免费一区二区三区 | 亚洲tv成人天堂在线播放 | 免费黄色成人 | 超91在线| 女人十八一级毛片 | 久久一本综合 | 亚洲伊人色 | 大毛片a大毛片 | 亚洲国产欧洲综合997久久 | 美女视频黄在线观看 | 欧美成人小视频 | 日韩一中文字幕 | 亚洲综合91 | 久久国产美女免费观看精品 | 91视频免费播放 | 91香蕉成人免费高清网站 | 欧美成人全部视频 | 日韩美女爱爱 | 一级毛片不卡 | 亚洲国产精品久久日 | 青青热久久国产久精品秒播 | 免费观看的毛片手机视频 | 欧美一级特黄特色大片 | 色老头一级毛片 | 免费黄色一级网站 | 亚洲一级网站 | 久久精品国产亚洲欧美 | 一级毛片免费完整视频 |